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Estimation of Variance Components of Quantitative Traits in Inbred
Populations
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Summary

Use of variance-component estimation for mapping of
quantitative-trait loci in humans is a subject of great
current interest. When only trait values, not genotypic
information, are considered, variance-component esti-
mation can also be used to estimate heritability of a
quantitative trait. Inbred pedigrees present special chal-
lenges for variance-component estimation. First, there
are more variance components to be estimated in the
inbred case, even for a relatively simple model including
additive, dominance, and environmental effects. Second,
more identity coefficients need to be calculated from an
inbred pedigree in order to perform the estimation, and
these are computationally more difficult to obtain in the
inbred than in the outbred case. As a result, inbreeding
effects have generally been ignored in practice. We de-
scribe here the calculation of identity coefficients and
estimation of variance components of quantitative traits
in large inbred pedigrees, using the example of HDL in
the Hutterites. We use a multivariate normal model for
the genetic effects, extending the central-limit theorem
of Lange to allow for both inbreeding and dominance
under the assumptions of our variance-component
model. We use simulated examples to give an indication
of under what conditions one has the power to detect
the additional variance components and to examine their
impact on variance-component estimation. We discuss
the implications for mapping and heritability estimation
by use of variance components in inbred populations.
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Introduction

The use of variance-component analysis to study quan-
titative traits began early in the 20th century (Weinberg
1909; Fisher 1918). Fisher (1918) described a partition
of the total variance ( ) of a quantitative trait in anVt

outbred population into variance due to environment
( ), additive genetic effects ( ), dominance ( ), andV V Ve a d

epistasis ( ). The sum of all those components, asideVI

from environmental variance, is generally called the “ge-
netic variance” ( ). In principle, one can allow for gene-Vg

environment interactions as well. Such a variance de-
composition can be used to assess heritability of a trait.
Heritabilities in the broad and narrow sense provide two
measures of the importance of genetic factors to a trait,
with the broad-sense heritability, , also called theV /Vg t

“coefficient of genetic determination,” expressing the ex-
tent to which the phenotype is explained by genotype
in a particular population. The narrow-sense heritability,
given in an outbred population by and typicallyV /Va t

referred to simply as the “heritability,” measures the
degree to which, in the given population, the offspring
phenotype is explained by the parental phenotypes. Var-
iance-component estimation may be done in conjunction
with segregation analysis, in an effort to elucidate the
genetic model (Elston and Stewart 1971; Morton and
MacLean 1974). More recently, variance-component
analysis has been used for the mapping of quantitative
traits, by including in the model one or more compo-
nents of variance due to a major gene linked to a par-
ticular locus (Goldgar 1990; Schork 1993; Amos 1994;
Almasy and Blangero 1998). In practice, many mapping
and heritability studies in outbred populations consider
only environmental, additive, and dominance variance
or only environmental and additive variance. With ap-
propriate breeding designs in animal or plant models, it
is, in principle, possible to estimate epistatic variance,
but this is not feasible in humans.

Commonly used methods for estimation of compo-
nents of variance of quantitative traits include parent-
offspring regression, analysis of variance (ANOVA) ap-
plied to sib and/or half-sib families, and ANOVA applied
to MZ and DZ twins (for a detailed survey, see, e.g.,
the work of Lynch and Walsh [1998]). ANOVA has the
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advantage of providing unbiased estimators even when
the data are not normally distributed, although the as-
sumption of normality is generally used to assess un-
certainty in the estimate. Such approaches are particu-
larly suited to controlled breeding situations but are not
ideal for populations for which one has information on
many relationship types and unbalanced family sizes.
The situation is particularly extreme in isolated popu-
lations in which most individuals are fairly closely re-
lated and there is detectable inbreeding. In such a pop-
ulation, it may be impossible to obtain many true full
or half-sibs, because, for example, apparent “half-sibs”
will usually have a relationship that, because of addi-
tional relatedness of their parents, is closer than half-
sib. In fact, in some populations, such as the Hutterites,
each pair of individuals has such complicated intercon-
necting lines of relationship that it is only in very cir-
cumscribed situations that two different relative pairs
have exactly the same relationship (see Appendix A).

A more flexible alternative to ANOVA methods for
estimation of variance components is maximum likeli-
hood (ML) (or restricted maximum likelihood [REML])
variance-component estimation (Hartley and Rao 1967;
Patterson and Thompson 1971). Recently this meth-
odology has gained interest for purposes of mapping of
quantitative traits (Goldgar 1990; Schork 1993; Amos
1994; Almasy and Blangero 1998). For the price of as-
suming a particular distribution, generally multivariate
normal, for the phenotype, the method allows one to
partition the variance into its basic genetic and nonge-
netic components, using a sample of individuals of
known relationship. Because the analysis can use the
information from all types of relative pairs in the data,
without concern for balanced numbers of families of
restricted relationship types, the information inherently
available in the data is used more efficiently than in
ANOVA methods.

The computational burden of ML/REML variance-
component estimation in an inbred population can be
great. In part, this is due to there being more dominance-
variance components that must be estimated in the in-
bred than in the noninbred case (Harris 1964; Jacquard
1974; Cockerham and Weir 1984). The resulting com-
putational difficulties have limited such studies in the
past (de Boer and Hoeschele 1993). Recently, Shaw and
Woolliams (1999) have estimated these additional dom-
inance-variance components, using REML, apparently
for the first time in a livestock species. Shaw et al. (1998)
performed such an estimation in the flowering annual
Nemophila menziesii. Shaw and Woolliams’s (1999)
study of sheep found little evidence of either non-0 in-
breeding depression or inbreeding dominance compo-
nents. Shaw et al. (1998), on the other hand, detected
significance in several traits of both one of the three
inbreeding dominance components and the inbreeding

depression. To our knowledge, no studies estimating in-
breeding dominance components have been done in hu-
mans. There have been a number of studies attempting
to estimate inbreeding depression of various traits in
humans—for example, the studies by Barrai et al.
(1964), Mange (1964), Bittles and Neel (1994). In the
studies by Barrai et al. (1964) and Bittles and Neal
(1994), association, in many populations, between mar-
ital consanguinity and social factors cause confounding.
In the Hutterite study by Mange (1964), relationships
among individuals in the population are not taken into
account in the assessment of uncertainty, potentially in-
flating the significance of the inbreeding depression.

Although most human genetic studies include outbred
families, there has been a recent growth of interest in
inbred isolates, because of their apparent advantages in
genetic mapping studies. Although simplifying the full
variance-component model for inbred individuals to that
for the noninbred case may be justifiable at times, it may,
in general, introduce bias in the estimates, depending on
the nature of the trait and the population. Here we pre-
sent a variance-component method that, in its estimates
of the additive, dominance, and environmental variance
components and of inbreeding depression, fully takes
into account the effects of inbreeding in the population.
We apply the method to a Hutterite sample of 806 in-
dividuals who are related by a 13-generation, 1,623-
member pedigree. First we describe the identity coeffi-
cients for pairs of inbred individuals and describe how
they are used in the general variance-component frame-
work. We then apply the method to the sample of Hut-
terites with HDL as the phenotype.

Methods

General Identity States

In order to estimate variance components by use of
pairs of relatives in an inbred pedigree, it is necessary
to specify the probabilities of identity-by-descent (IBD)
sharing for pairs of individuals, on the basis of their
relationship. First, we will explain more carefully what
we mean by (pairwise) relationship and how we deter-
mine it in practice. Then we will describe the possible
identity states for single-locus genotypes of pairs of in-
dividuals in an inbred population and will define the
associated condensed coefficients of identity (Gillois
1964; Harris 1964).

Examples of pairwise relationships include sib, half-
sib, avuncular, and first-cousin. These can be thought of
as equivalence classes in pedigrees, in which the pedigree
for a pair of individuals is a directed graph with nodes
for the two individuals in the pair, with a node for each
individual who is ancestral to at least one of the two
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Figure 1 15 Possible identity states for individuals A and B,
grouped according to their nine condensed states. Lines indicate alleles
that are IBD (adapted from the work of Lynch and Walsh [1998]).

Figure 2 Plot of vs. , for the 324,415 pairs of individuals�D D8 7

in the Hutterite sample, where the labeled clouds of points are de-
scribed in table 1. The horizontal lines are at values andD = .258

.D = .58

individuals in the pair and with directed edges connect-
ing parents to offspring. In practice, pedigree informa-
tion will include a limited number of generations, and
founders of the pedigree will be assumed to be unrelated,
although in fact they are likely to be at least very dis-
tantly related. In “outbred” populations, two individuals
who have a sib relationship as inferred on the basis of
a two-generation pedigree of the individuals and their
parents should also have a sib relationship, as inferred
on the basis of an n-generation pedigree of the individ-

uals and their ancestors, where n is some large positive
integer; that is, one must go back many generations be-
fore any of the sibs’ ancestors are found to be related.
However, in an inbred population, if two individuals
have a sib relationship as inferred on the basis of a two-
generation pedigree, then examination of, for instance,
a five-generation pedigree for those individuals and their
ancestors may reveal that their parents are second cous-
ins. In this case their relationship is in fact closer than
sib. Consideration of a six- or seven-generation pedigree
for this pair of individuals and their ancestors may reveal
additional shared ancestry, allowing a more precise de-
termination of the pair’s relationship. We can define a
partial ordering on the set of pairwise relationships and
choose a precise definition of the n-generation pedigree
for two individuals (see Appendix A). We then have that
the n-generation pedigree for a pair of individuals gives
a lower bound on the true relationship for the pair, with
the accuracy of the approximation increasing with n. In
the Hutterite data set, we have a 13-generation pedigree
containing nodes for all the individuals in the study. In
our calculations, we assume that the founders of this
pedigree are unrelated.

For a pair of individuals in an inbred population, there
are 15 possible ways in which the four alleles of the pair
at a particular locus can be shared IBD (fig. 1) (Jacquard
1974). One often restricts attention to genetic models
for which the distribution of the phenotype depends on
the alleles inherited from the parents, without regard for
which allele is maternal and which is paternal. In this
case, the 15 possible IBD-sharing configurations among
the four alleles for a pair of individuals may be collapsed
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Table 1

Approximate Relationships Corresponding to Labeled Point Clouds of Figure 2, with Number of
Occurrences in the Hutterite Data Set and with Corresponding IBD Probabilities for Outbred
Individuals

Label Approximate Relationship(s)
in Outbred�( D ,D )7 8

Individuals No. of Pairs

s Sib (.5,.5) 1,601
p Parent-offspring (0,1) 1,114
h�c Half-sib plus first cousina (.354,.5) 68
h Other half-sib (0,.5) 0
a Avuncular (0,.5) 4,354
g Grandparent-grandchild (0,.5) 748
c�c Double first cousin (.25,.375) 557
v (Half-sib�cousin) once removedb (0,.375) 425
w Cousin plus second (half-sib�cousin)c (.2165,.344) 12
x Cousin plus (cousin once removed)d (.1768,.3125) 377
y Other first cousin (0,.25) 7,897

Grand-avuncular (0,.25) 2,314
Great-grandparent/child (0,.25) 98
Half-avuncular (0,.25) 33
(Double cousin) once removed (0,.25) 834

z Double (cousin once removed) (.125,.21875) 424

a Individuals 1 and 2 in figure 3A.
b Individuals 1 and 4 in figure 3A.
c Individuals 3 and 4 in figure 3A.
d Individuals 1 and 2 in figure 3B.

into nine equivalence classes, which we refer to as “iden-
tity states” (fig. 1). Following Jacquard (1974) (also see
the work of Gillois [1964] and Harris [1964]; Lange
[1997] provides a detailed exposition), for a pair of in-
dividuals we let Di, denote the conditionali = 1,...,9
probability of identity state i, given the relationship be-
tween the individuals. These ’s are called the “con-D i

densed coefficients of identity.” With these identity co-
efficients, one can define other, more commonly used
measures of relatedness, such as the kinship and in-
breeding coefficients. The kinship coefficient between in-
dividuals A and B, which can be interpreted as the prob-
ability that, at a given locus, a randomly chosen allele
from individual A is IBD to a randomly chosen allele
from individual B, conditional on the relationship be-
tween A and B, is ,1 1F = D � (D � D � D ) � DAB 1 3 5 7 82 4

and the inbreeding coefficients of A and B, (i.e., the
kinship coefficient of A’s parents and the kinship coef-
ficient of B’s parents), are andf = D � D � D � DA 1 2 3 4

. The k coefficients of Cottermanf = D � D � D � DB 1 2 5 6

(1940)— , , and , which are equivalent to , ,k k k D D0 1 2 9 8

and (with , , and )—are suf-D k = D k = D /2 k = D7 0 9 1 8 2 7

ficient to fully specify the relationship between any pair
of individuals only when neither of the individuals is
inbred.

A recursive algorithm for computing the identity co-
efficients for any pedigree has been given by Karigl
(1981) (also see the work of Harris [1964] and Lange
[1997]). Although this algorithm works well for small-

to moderate-size pedigrees, large inbred pedigrees can
prove very problematic computationally. De Boer and
Hoeschele (1993) have developed a similar algorithm,
which uses a tabular method essentially based on the
recursion relations given by Harris (1964), and were able
to calculate the needed relationship coefficients in a sim-
ulated population of 200 inbred individuals constituting
five generations. However, they concluded that imple-
mentation of their method along with subsequent var-
iance-component analysis for larger populations was not
yet feasible, owing to the size of the resulting relationship
matrices. We chose to use the basic algorithms of Karigl
(1981) and a computational strategy that increases their
efficiency to the point where they are feasible even in
large inbred pedigrees (see Appendix B).

Quantitative-Trait Model

We consider the following model for a quantitative
trait y, , where yk is the phenotypicTy = x b � g � ek k k k

(trait) value for the kth individual, xk is a vector of cov-
ariate values for the kth individual, b is a vector of fixed
effects, gk is the random genetic effect for individual k,
and the environmental effects are assumed to be in-ek

dependent and identically distributed normal ran-(0,V)e
dom variables, with and independent and ( , ) note g e g
depending on , the matrix of covariate values. Fur-X
thermore, and ,Lg = S g [(i,j) ] g [(i,j) ] = a � a � dk l=1 l l,k l l,k li lj lij
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Figure 3 Example pedigrees 1 (A) and 2 (B) from the Hutterite sample

where l indexes the genetic loci influencing the trait, (i,j)l,k

is the genotype of the kth individual at the lth locus, ali

and alj are the additive effects, and dlij is the dominance
(i.e., interaction) effect between the two alleles at the lth
locus, with ali, alj, and dlij = dlji all fixed. As described in
more detail below, we will generally take g to be mean
0 in outbred individuals, by including a constant term
in , and we will define a and d to minimize the meanTx bk

squared deviation of gl[(i,j)l,k] from in an outbreda � ali lj

random-mating population.
Note that the genotype (i,j)l,k of the kth individual at

the lth locus is random and dependence among relatives
is induced by the inheritance process. In principle, one
can think of the relationships among individuals in the
population as being known and can consider the above
model conditional on them, or one can think of the
relationships among individuals in the population as fol-
lowing some probability model. We will usually con-
dition on the relationships among individuals. This ap-
proach allows estimation of the variance components
described below and is applicable to the Hutterite data
set that we are analyzing, for which extensive pedigree
information is available.

The case of a small number of loci with large genetic
effects, representing one or more major genes, would
result in the phenotype yk being a mixture of normal

random variables, with a complicated dependence struc-
ture for , owing to the inheritance process. Fitting thisy
model to data by maximum likelihood presents serious
computational challenges even for pedigrees much sim-
pler than that of the Hutterites. Here we consider instead
the polygenic case in which g—and, hence, y—is as-
sumed to be multivariate normal. Fisher (1918) sug-
gested this as an approximation to the case of a large
number of loci with small genetic effects and additivity
across loci, assuming that conditions of a central-limit
theorem are met. The polygenic model is widely used
even for mapping, where, presumably, the locus being
mapped is actually a major gene (Goldgar 1990; Schork
1993; Amos 1994; Almasy and Blangero 1998). Some
sufficient conditions for a central-limit theorem have
been discussed by Lange (1978); however, these condi-
tions exclude the case in which there is both inbreeding
and non-0 dominance variance. The trait models that
we consider in the present paper have both inbreeding
and non-0 dominance variance, with an assumption of
either (1) unlinked loci or (2) linked loci with the con-
straint that, on each chromosome, at most one locus has
non-0 inbreeding depression. In Appendix C, we give an
extension of the central-limit theorem to this case.

Under the assumption of multivariate normality, we
are concerned with the first and second moments of y
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Figure 4 Histograms of (A) (kinship coefficient) for the 324,415 pairs of individuals in the Hutterite sample and (B) inbreedinglog10

coefficient for the 806 individuals in the Hutterite sample.

induced by the inheritance process, conditional on the
pedigree, ignoring higher moments. Initially, we drop the
subscript indexing the locus and focus on first and sec-
ond moments for the single-locus genetic model, which
is then extended to multiple loci.

Variance Components in an Outbred Population

Consider an infinitely large, random mating popula-
tion—hence, one with no inbreeding. Let pij be the prob-
ability that a randomly chosen individual has genotype
(i,j), , , where n is the number of al-1 � i � n 1 � j � n
leles at the locus. Let pi be the probability that a ran-
domly chosen allele is i. We assume Hardy-Weinberg
equilibrium—that is, for and . For2p = 2p p i ( j p = pij i j ii i

a single locus, we now write the genetic effect of ge-
notype (i,j) as . In this population, allg = a � a � dij i j ij

individuals will have the same mean genetic effect.
We can assume that this mean is 0, because a non-0
mean can be absorbed into the constant term in .Tx bk

Let , , andn nE(a) = S a p E(d ) = S d p Cov(a,d) =i=1 i i j i=1 ij i

. Here, and represent the meann nS S a d p p E(a) E(d )i=1 j=1 i ij i j j

additive effect of a randomly chosen allele at a locus
and the mean dominance effect of allele j at a locus,
respectively, where the mean is taken with respect to the
distribution of alleles in the population. Cov(a,d) is the
covariance of additive and dominance effects of an allele
in the population. Then we can define ai and dij so that

, for all j. This is equivalentCov(a,d) = E(a) = 0 E(d ) = 0j

to choosing the ai and dij to minimize the expected
squared deviation of gij from , where (i,j) is a ge-a � ai j

notype chosen at random from the population.
Consider Cov(y), the covariance matrix of y condi-

tional on the pairwise relationships of the sampled in-
dividuals. Cov(y) has constant diagonal Var(y) = V �a

, where Va is the additive variance ,n 2V � V V = 2S p ad e a i=1 i i

Vd is the dominance variance , andn n 2V = S S p p dd i=1 j=1 i j ij

Ve is the residual environmental variance. Note that Va,
which represents the individual’s phenotype variance
due to additive genetic effects, has a factor of two, to
account for the two alleles in a genotype. For ,A ( B
the ABth element of Cov(y)—that is, the covariance
between the genetic values of individuals A and B,
conditional on their relationship, is Cov(y ,y ) =A B

where FAB is the kinship co-Cov(g ,g ) = 2F V � D VA B AB a 7 d

efficient for A and B.

Variance Components in an Inbred Population

Inbred populations violate the above assumptions.
Nevertheless, following Harris (1964), we can still define
ai and dij as above—that is, in an infinitely large pop-
ulation undergoing random mating with allele frequen-
cies equal to the frequencies in the population in ques-
tion. The population model that we assume here is one
of finite size undergoing random mating so that the prob-
ability pij of individual k being genotype (i,j), conditional
on the relationship between the individual’s parents, is

and when ,2p = f p � (1 � f )p p = (1 � f )2p p i ( jii k i k i ij k i j

where fk is individual k’s inbreeding coefficient. In this
case, the mean genetic effect for individual k is

E(g ) = f m , (1)k k h

where and is the mean in the homozygousnm = S p d mh i=1 i ii h

population and is known as the “inbreeding depression”
(for a review of inbreeding depression, see the work of
Lynch and Walsh [1998]). (Recall that for an out-E(g )k

bred individual was set to 0 by absorbing any non-0
value into the constant term of the trait model.) In ad-
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Figure 5 Plot of inbreeding coefficient versus year of birth for
the 806 individuals in the Hutterite study sample

dition, the homozygosity increase that results from in-
breeding alters the matrix . Note that the additiveCov(y)
genetic component of covariance is not affected by the
increase in homozygosity, because the allele frequencies
are unchanged. In contrast, the dominance variance now
takes on three additional components. According to Jac-
quard (1974), these components are as follows:

1. , the dominance variance in the homozygous pop-Vh

ulation, where ;2 2V = Sp d � mh i ii h

2. Cov , the covariance of additive and domi-(a,d)h

nance effects in the homozygous population, where
;Cov (a,d) = Sp a dh i i ii

3. , the square of the inbreeding depression.2mh

The matrix has as its kth diagonal elementCov(y)

Var(y ) = (1 � f )V � (1 � f )V � fVk k a k d k h

2�4f Cov (a,d) � f (1 � f )m � V ,k h k k h e

where is the inbreeding coefficient of the kth individ-fk
ual. The off-diagonal elements become

Cov(y ,y ) = Cov(g ,g ) =A B A B

2F V � D V � W V � 2(W � W )AB a 7 d 4 h 3 4

2#Cov (a,d) � (D � D � f f )m ,h 1 2 A B h

where is the probability that all four alleles ofW = D4 1

A and B are IBD, and is the prob-W = D � (D � D )/23 1 3 5

ability that three alleles taken at random from A and B
are IBD.

For the polygenic model with additivity of genetic ef-
fects across loci, no linkage disequilibrium among loci,
and no more than one locus per chromosome having
non-0 inbreeding depression, we get the expressions (see
Appendix C)

Var(y ) = (1 � f )V � (1 � f )V � fVk k a k d k h

�4f Cov (a,d) � f (1 � f )SS � V (2)k h k k m eh

and

Cov(y ,y ) = Cov(g ,g ) =A B A B

2F V � D V � W V � 2(W � W )AB a 7 d 4 h 3 4

#Cov (a,d) � (D � D � f f )SS , (3)h 1 2 A B mh

where , , , and are now redefined to beV V V Cov(a,d)a d h

the sums, over all loci, of their single-locus values. Here,
, where the sum is over all loci, and is the2SS = S m mm l hl hlh

inbreeding depression of the lth locus. In equation (1),
the expression for the mean vector, is redefined to bemh

the sum, over all loci, of its single-locus value. If the

number of loci can be arbitrary, we have the following
constraints:

1. are all nonnegative (and, we as-V ,V ,V ,V and SSa d e h mh

sume, not all 0);
2. If , then ;SS = 0 m = 0m hh

3. .�FCov (a,d)F � VV /2h h a

4. If , then and (and, as a con-V = 0 SS = 0 V = 0d m hh

sequence of 2 and 3, and as well).m = 0 Cov (a,d) = 0h h

The first constraint is due to the fact that , , , andV V Va d e

are all variances and that is a sum of squares.V SSh mh

The second constraint simply reflects the fact that a sum
of squares equals 0 only if all the components are 0,
implying that their sum is 0. The third constraint is a
version of the well-known inequality FCov(x,y)F �

, which is a special case of the Cauchy-�Var(x)Var(y)
Schwartz inequality and which is equivalent, when the
variances are non-0, to the constraint that the correla-
tion must lie between �1 and 1. Here, we have

, where the h subscript in-�FCov (a,d)F � Var (a)Var (d)h h h

dicates that the quantities are calculated in the homo-
zygous population,

22Var (d) = p d � p d = V ,� �h i ii i ii h( )
i i

122Var (a) = p a � p a = V .� �h i i i i a( ) 2i i

Thus, . To obtain the fourth con-�FCov (a,d)F � VV /2h h a

straint, we have only if for all i and j andV = 0 d = 0d ij

for all loci, because is a weighted sum of squares ofVd

the ’s. When every is 0, we have , , andd d m = 0 V = 0ij ij hl h

.SS = 0mh

Using this model, we can now partition the total var-



Figure 6 Histograms of (A) , (B) , (C) combined with , (D) combined with , (E) , (F)log (D ) D log (D ) log (D ) D D log (D )10 1 2 10 3 10 5 4 6 10 7

, and (G) , for the 324,415 pairs of individuals in the Hutterite sample.log (D ) D10 8 9
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Table 2

Mean and SD of Identity Coefficients, Taken over All Pairs of
Hutterite Individuals

COEFFICIENT

MEAN (SD)

GEOMETRIC

MEANaUntransformed
Log10

Transformationa

D1 .000217 (.000747) �3.96 (.42) .000111
D2 .000993 (.000678) ) )
D ,D3 5 .00411 (.00382) �2.49 (.30) .00321
D ,D4 6 .0283 (.0134) ) )
D7 .00444 (.01833) �2.67 (.39) .00212
D8 .141 (.089) �.899 (.190) .126
D9 .788 (.101) ) )

a Three individuals are removed from the sample before the log10

transformation or geometric mean is taken (see text). With these three
individuals removed, , , , , and are non-0 for all pairs;D D D D D1 3 5 7 8

note that , , , and will always be 0 for parent-offspring pairs.D D D D2 4 6 9

iance of the quantitative trait in the population. Consider
choosing an individual uniformly at random from the
population, and let the random variable Z denote that
individual’s trait value. Let F be the random variable
representing the inbreeding coefficient of the individual
chosen. Then, using a standard identity of conditional
probability, we have

V = Var(Z) = E[Var(ZFF)] � Var[E(ZFF)]t

= (1 � m )V � (1 � m )V � mV � 4m Cov (a,d)f a f d f h f h

2 2 2�[m (1 � m ) � j ]SS � V � j m ,f f f m e f hh

where and are the mean and variance, respectively,2m jf f

of the inbreeding coefficient in the population. Then the
narrow and broad sense heritabilities in this population
are and , respectively.2 2h = (1 � m )V /V H = 1 � V /Vf a t e t

ML and REML Estimation

Given a random sample of N individuals from the
population, with the relationships among them known,
the multivariate normal log-likelihood is

N 1
l(b,m ,V; y) = � ln 2p � ln FQFh 2 2

1 T �1� (y � Xb � fm ) Q (y � Xb � fm ) , (4)h h2

where is the vector of fixed effects; is the inbreedingb mh

depression; , the vector ofV = [V ,V ,V ,Cov (a,d),SS ,V ]a d h h m eh

variance-component parameters; is the covariance ma-Q

trix , which is a function of and the identityCov(y) V

coefficients and is given in equations (2) and (3); isFQF
the determinant of Q; is the vector of phenotypic values;y

is the covariate matrix; and is the vector of inbreed-X f
ing coefficients. We maximize the log likelihood by im-
plementing a search over , using the simplex algorithmV
of Nelder and Mead (1965). For each choice of , theV
maximum-likelihood estimates of and can easily beb mh

found by generalized regression. Standard errors are ob-
tained from the observed Fisher information.

We consider the full model of equations (1)– (3) and,
also, various submodels obtained by setting some of the
variance components to 0. In addition to the parameter
estimates, standard errors (SEs), and maximized log like-
lihoods, we report the values of two model-selection cri-
teria, the Akaike information criterion (AIC [Akaike
1974, pp. 267–281) and the Bayesian information cri-
terion (BIC [Schwartz 1978]). AIC is defined to be

, and BIC is defined to be , whereˆ ˆ�2l � 2k �2l � k log (n)
is the maximized log likelihood, k is the number ofl̂

freely varying parameters, and n is the sample size. Min-
imization of these criteria has been proposed for use in
selecting from a number of models of different dimen-
sion. The term or is an attempt to enforce2k k log (n)
parsimony by penalizing the log likelihood for estima-
tion of additional parameters.

Maximum-likelihood estimation of variance compo-
nents does not, in general, take into account the loss in
degrees of freedom that results from estimation of the
fixed effects, and, as a result, ML estimators tend to be
biased. In particular, estimates of the variance compo-
nents are generally downwardly biased (Corbeil and
Searle 1976), with the bias increasing as the number of
fixed effects increases. If the sample size is small, this
bias can become quite substantial. An alternative to ML
estimation is REML estimation (Searle et al. 1992),
which essentially maximizes only that portion of the
likelihood that depends on the variance components and
not on the fixed effects. Hence, bias of this type is re-
moved by REML in a manner analogous to the removal
of bias in a variance estimator by dividing by the degrees
of freedom rather than by dividing by the sample size.
The question of whether ML or REML is the preferred
method in any particular situation, however, is unclear,
because each has advantages and disadvantages (Har-
ville 1977; Searle et al. 1992). We chose to implement
REML in addition to ML, to see how they compare in
this situation.

REML, instead of using the data vector directly, isy
based on a linear transformation of the data, where the
transformation is chosen in such a way that the fixed
effects are eliminated from the model. Given the mixed
model , consider a matrix K such thaty = Xb � g � e

. Applying this transformation to our modelKX = 0
equation results in . If is normal, withKy = Kg � Ke y
mean and variance , then is also normal, withXb V Ky
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Table 3

Maximum-Likelihood Estimates of Variance Components and Inbreeding Depression for HDL in the Hutterites, with Resulting
Narrow- and Broad-Sense Heritabilities

Model (SE)mh (SE)Ve (SE)Va (SE)Vd (SE)Vh (SE)2h (SE)2H AIC BIC Log Likelihood

1 .89 (.05) 467 484 �229.43
2 .33 (.06) .60 (.11) .65 (.06) .65 (.06) 381 402 �185.56
3 4.84 (2.73) .33 (.06) .60 (.11) .65 (.06) .65 (.06) 381 407 �184.54
4 .23 (.14) .59 (.12) .13 (.16) .65 (.14) .76 (.12) 382 408 �185.13
5 4.55 (2.83) .26 (.13) .59 (.11) .089 (.15) .66 (.14) .73 (.11) 383 412 �184.33
6 .22 (.09) .55 (.11) 5.03 (2.88) .59 (.10) .77 (.08) 379 405 �183.67
7 4.13 (2.96) .23 (.09) .55 (.11) 4.57 (2.86) .60 (.10) .76 (.08) 380 410 �183.07
8 .21 (.14) .54 (.11) .023 (.17) 4.87 (3.21) .62 (.16) .79 (.12) 381 411 �183.66
9 4.12 (2.96) .26 (.13) .55 (.11) .006 (.17) 4.53 (3.18) .63 (.16) .76 (.12) 382 416 �183.07

mean and variance . REML then proceeds asT0 KVK
ML, but with the transformed data vector and variance
matrix. Although REML apparently requires one to
compute the matrix K, it is possible to formulate the
REML equations only in terms of , , and (e.g., seey X V
the work of Searle et al. [1992] and Hofer [1998]).

Comparison of Models With and Without Additional
Inbreeding Dominance Components and Inbreeding
Depression

In studying a quantitative trait in an inbred popula-
tion, one might choose to consider a model simpler than
that given in equations (1)–(3), by setting , ,m Vh h

, and to 0. In an inbred population, thisCov (a,d) SSh mh

model is equivalent to setting for all i; that is, atd = 0ii

each locus, dominance effects occur only between dis-
tinct alleles, and the genetic effect of having two copies
of a particular allele is always twice the additive effect
of a single copy. Although it is not particularly natural
or reasonable to assume this, it makes the analysis con-
siderably easier. In addition to a parameter space of
smaller dimension, we have the advantage that the only
information needed from the pedigree is the matrix of
kinship coefficients (here we refer to standard kinshipF

coefficients defined for pairs of individuals, not the gen-
eralizations defined in Appendix B) and the matrix of

, which are vastly simpler to obtain than are the ad-D7

ditional identity coefficients needed in the more general
case (see Appendix B). The model suggested by Almasy
and Blangero (1998) for mapping of a major gene in
arbitrary pedigrees would correspond, in inbred pedi-
grees, to this simplified model just described. It seems
sensible to examine whether, in practice, the more com-
plicated and more accurate model is worth the consid-
erable extra effort to fit. There can, of course, be no
definitive answer to this question, but, by considering
various examples, we may get an idea of those situations
in which the difference between these models is likely
to have a practical impact. We examine this question in

three ways: (1) by a comparison of variance-components
analyses of HDL in the Hutterites, under the models with
and without the additional inbreeding dominance com-
ponents and inbreeding depression; (2) by a small-scale
simulation study in which trait values are simulated for
various combinations of the Hutterite sample and ad-
ditional inbred individuals and in which results of in-
ference under the two models are compared; and (3) by
comparing, in some examples, the results that one would
obtain asymptotically under the two different models.
By looking at such asymptotic results, we are able to
gain insight into the comparison of the models when the
number of replicates is large, a situation for which sim-
ulation would be infeasible. We now describe the last of
these three approaches; the first and second are presented
in the Results section.

Suppose that the true model for is that described iny
equations (1)–(3). At the moment, we are not concerned
with fixed effects, so we assume that there are none,
with the exception of a constant term m. Assume that
the parameter vector lies in parameter spacev = (m,m ,V)h

defined by the constraints described previously.8V O �1

Let be the convex subspace withV O V m = V =2 1 h h

Let the true set of parameter valuesCov (a,d) = SS = 0.h mh

be represented by , where may or may not lie∗ ∗v � V v1

within . Assume that the data consist of a randomV2

sample of individuals from a population, where the re-
lationships among the individuals in the sample are
known and conditioned on. We consider an asymptotic
scenario in which independent, identically distributed
replicates of the sample are drawn, where, in each rep-
licate, the same relationships hold among the individ-
uals. Suppose that we have n such replicates generated
under the model with true parameter and that we∗v

maximize the log-likelihood over all . Let rep-ˆv � V v2 n

resent the resulting estimator. We consider the (almost
sure) limit of as n approaches infinity; that is, wev̂n

consider the result that would be obtained asymptoti-
cally if the variance components were estimated under



Abney et al.: Inbreeding and Variance Components 639

Table 4

Scenarios Considered in Projections and Simulations Comparing Models With and Without Additional
Inbreeding Dominance Components

Scenario Population
Average

Inbreeding Model

A 806 Hutterites .034 Three-quarters dominant
B 806 Hutterites .034 Fully dominant
C Hutterites2 # 806 .034 Fully dominant
D 806 Hutterites � 500 avuncular- pair offspring .069 Three-quarters dominant
E 806 Hutterites � 800 cousin-pair offspring .048 Fully dominant
F 806 Hutterites � 500 avuncular- pair offspring .069 Fully dominant
G Hutterites � 1,000 avuncular- pair offspring2 # 806 .069 Fully dominant

a model assuming when,m = V = Cov (a,d) = SS = 0,h h mh h

in fact, these components may be non-0.
Let maximize over all the expected logṽ v � V2

likelihood

∗E log L(v; y) = L(v ; z)logL(v; z)dz ,∗v �
where the expected value is under the true parameter

, and L is the likelihood function whose log is given∗v

in formula (4). Note that this is equivalent to choosing
to minimize the Kullback-Leibler divergencev � V2

from the distribution represented by to the distribu-∗v

tion represented by (Kullback and Leibler 1951; Kull-v

back 1959). Because, in our case, is aE log L (v; y)∗v

strictly convex function of , a unique maximum exists.v v

Under the asymptotic scenario described, with proba-
bility 1, is the limiting value of as n approaches˜ ˆv vn

infinity (Huber 1967; Akaike 1973, pp. 267–281; re-
viewed, for the exponential family case, by McCulloch
[1988]).

For a given choice of pedigree and of , we can com-∗v

pare and to see what is the effect asymptotically of∗ṽ v

considering the simpler model, and we can then try to
evaluate the practical implications. For a given pedigree
structure and given , we can calculate by maximiz-∗ ˜v v

ing a likelihood over , where, in the likelihood,v � V2

we plug in the expected values of the sufficient sta-
tistics under , in place of the sufficient statistics cal-∗v

culated from the data. This calculation follows from the
proof of Result 1 of McCulloch (1988), for the expo-
nential family. Writing , with ,∗ ∗ ∗ ∗ ∗v = (m ,m ,V ) m = 0h

, and, defining to be∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗V = (V ,V ,V ,Cov (a,d) ,SS ,V ) Qa d h h mh e

the covariance matrix given in equations (2) and
(3), evaluated at , we obtain , with∗ ˜ ˜ ˜˜V v = (m,0,V) V =

, where , is the∗ T �1 T �1˜ ˜ ˜ ˜ ˜ ˜˜(V ,V ,0,0,0,V ) m = m (1 Q f)/(1 Q 1) Qa d e h

covariance matrix given in equations (2) and (3) and
evaluated at , and is the maximizer, over , of˜ ˜V V V2

N 1 ˜� ln 2p � ln FQF
2 2

T �1 2˜1 (1 Q f)
�1 ∗ ∗2 T �1 ∗2˜ ˜� tr(Q Q ) � m f Q f � m .[ ]h h T �1˜2 1 Q 1

If we allow , then is unchanged, and is added∗ ∗˜m 1 0 V m

to . Thus, using the likelihood-maximizing routine de-m̃

veloped to analyze the data, we can calculate the as-
ymptotic value of the maximum-likelihood estimate ofv

the parameters when the true model has the inbreeding
dominance components and inbreeding depression but
the fitted model does not. We apply this method in the
Results section, to evaluate the effect asymptotically of
ignoring the inbreeding dominance components and in-
breeding depression. This gives us an idea of the effect
of ignoring these components in large samples, for which
simulations are infeasible.

Two-Allele Models with Full and Three-Quarters
Dominance

In addition to the general model described in equa-
tions (1)–(3), we consider two special cases. These two
special cases are used, in the Results section, to simulate
phenotypes with some degree of dominance, in order to
assess the impact, on variance-component estimation, of
fitting a model with all the inbreeding dominance com-
ponents, as opposed to a simpler model in which these
components are fixed at 0. We now describe the two
polygenic models used to simulate the phenotypes. In
the first, every locus is assumed to be biallelic with com-
plete dominance; that is, the genetic effect of the het-
erozygote is the same as that of one of the two homo-
zygotes. In the second, every locus is assumed to be
biallelic with three-quarters dominance; that is, the ge-
netic effect of the heterozygote is three-quarters of the
way from the midpoint of the homozygote effects to one
of the two homozygote effects. For simplicity, we further
assume that the allele frequencies are the same at all loci.
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Table 5

Asymptotic Values of Estimated Variance Components and Heritabilities When a Model without Inbreeding
Dominance Components Is Fit, with the Dominant Allele Having Frequency .8 and with Scenarios as given in
Table 4

Ve Va Vd Vh Cov (a,d)h SSmh

TRUE (CALCULATED)

2h 2H

True model is fully dominant:
True value 1.00 1.00 2.00 4.50 1.50 2.00
Scenario:

B 1.02 1.21 2.19 .23 (.29) .77 (.77)
E .95 1.44 2.25 .23 (.33) .78 (.79)
F .97 1.93 2.03 .22 (.42) .80 (.80)

True model is three-quarters dominant:
True value 1.00 3.36 2.00 4.50 1.50 2.00
Scenario:

A 1.02 3.59 2.18 .51 (.54) .85 (.85)
D .80 4.34 2.18 .47 (.62) .87 (.89)

Let p be the frequency of the recessive allele (call this
“allele 1”), and let be the frequency of theq = 1 � p
dominant allele (call this “allele 2”). In each case, let

be the midpoint of the homo-m = [g (2,2) � g (1,1)]/2l l l

zygote effects for locus l, let be the excessd = g (1,2) � ml l l

of the heterozygote effect above the midpoint of the
homozygote effects for locus l, let , and letLg = S d1 l=1 l

, with L being the total number of loci. In theL 2g = S d2 l=1 l

fully dominant model, we have ,d = [g (2,2) � g (1,1)]/2l l l

and we can explicitly compute the variance components
to be (Jacquard 1974) , ,3m = �2pqg V = 8p qg V =h 1 a 2 d

, ,2 2 3 3 24p q g V = 4pq(p � q )g Cov (a,d) = �4p q(p �2 h 2 h

, and .q)g SS = V2 m dh

In the three-quarter–dominant model, we have d =l

, so that is three-quarters of its3 {[g (2,2) � g (1,1)]/2} gl l 14

value and is of its value in the fully dominant3 2g ( )2 4

case. In the three-quarter–dominant case, the expression
for the additive variance becomes

2

7 1
V = 2pq p � q g .a 2( )3 3

The expressions for the other genetic-variance compo-
nents are unchanged (only the values of and haveg g1 2

changed).
For the case when , we would have .�L = 1 m = � Vh d

As a consequence, for the model with all loci biallelic,
our assumption that no more than one locus per chro-
mosome has non-0 inbreeding depression is equivalent
to an assumption that no more than one locus per chro-
mosome has non-0 dominance variance. This is not gen-
erally true for nonbiallelic loci. In particular, can bemh

0 when is non-0, for a locus with three or more alleles.Vd

This implies that, in general, it is possible to have a
number of loci on a chromosome that exhibit non-0

dominance variance, with only one of them having non-
0 inbreeding depression.

Hutterite Population

We here apply the methods described above to a sam-
ple of individuals taken from a large, complex Hutterite
pedigree. The Hutterites are a religious sect that origi-
nated in the Tyrolean Alps during the 1500s. Between
the mid 1700s and the mid 1800s, while in Russia, the
population grew in size from ∼120 to 11,000 members
(Hostetler 1974). During the 1870s, ∼900 of these mem-
bers migrated to what is now South Dakota, and roughly
half settled on three communal farms. The population
has since expanded dramatically, with 135,000 Hutter-
ites now living in 1350 communal farms (called “col-
onies”) in the northern United States and in western
Canada. The Hutterites’ communal life-style ensures
that all members are exposed to a relatively uniform
environment. Genealogical records trace all extant Hut-
terites to !90 ancestors who lived from the early 1700s
to the early 1800s (Martin 1970). The relationships
among these ancestors are unknown, but some of them
may have been related. The three original South Dakota
colonies have given rise to the three major subdivisions
of the modern Hutterite population: the Schmiedeleut
(S-leut), the Dariusleut (D-leut), and the Leherleut (L-
leut). Members of each leut have remained reproduc-
tively isolated from each other since 1910 (Bleibtreu
1964).

The subjects of our study, the S-leut Hutterites of
South Dakota, are descendants of 64 Hutterite ancestors
and consist of four main lineages (Mange 1964). Infor-
mation on the relationships among members of our sam-
ple are in the form of a 13-generation, 12,903-member



Table 6

Number of Simulations Having Various P Values, and Average Variance-Component Estimates, with Heritabilities, for Simulated
Data Sets

A. Significance of Inbreeding Dominance-Variance Components,
for Different Scenarios Given in Table 4

No. of Simulations Having P =

Scenarioa 1 .10 .10–.05 .05–.01 ! .01

A 3 2 0 0
B 9 1 0 0
C 2 1 2 0
D 1 1 0 3
E 2 0 1 2
F 1 0 1 3
G 0 0 1 4

B. Average Variance-Component Estimates, with Heritabilities, for Simulated Data Sets and Scenarios as Given in Table 4a

Model and Scenariob Ve Va Vd Vh Cov (a,d)h SSmh
2h 2H

Three-quarters dominant model:
Scenario A:

True value 1.00 3.36 2.00 4.50 1.50 2.00 .51 .85
Mean (SE) 1.7 (.7) 2.6 (.4) 2.9 (1.0) .38 (.06) .76 (.09)
�MSE 1.5 1.1 2.2 .17 .20
Mean (SE) 1.8 (.5) 2.9 (.4) 2.3 (.9) 9.8 (4.4) �2.3 (1.1) .002 (.002) .43 (.07) .75 (.08)
�MSE 1.3 .9 1.8 10.3 4.4 2.0 .15 .19

Scenario D:
True value 1.00 3.36 2.00 4.50 1.50 2.00 .47 .87
Mean (SE) 1.5 (.6) 3.5 (.5) 2.6 (.9) .49 (.07) .80 (.08)
�MSE 1.3 1.0 1.9 .13 .17
Mean (SE) 1.7 (.6) 2.9 (.5) 2.2 (.9) 15.0 (6.4) �1.3 (1.6) 1e-5 (7e-5) .39 (.06) .78 (.07)
�MSE 1.3 1.1 1.8 16.5 4.2 2.0 .15 .17

Fully dominant model:
Scenario B:

True value 1.00 1.00 2.00 4.50 1.50 2.00 .23 .77
Mean (SE) 1.2 (.2) 1.0 (.1) 2.3 (.3) .23 (.03) .72 (.04)
�MSE .5 .4 1.0 .10 .13
Mean (SE) 1.3 (.1) 1.3 (.2) 1.8 (.2) 7.0 (2.6) �1.4 (.6) 2.3 (1.6) .29 (.04) .71 (.03)
�MSE .5 .5 .7 8.2 3.4 4.7 .12 .12

Scenario C:
True value 1.00 1.00 2.00 4.50 1.50 2.00 .23 .77
Mean (SE) 1.4 (.2) 1.2 (.1) 2.1 (.4) .23 (.03) .70 (.06)
�MSE .6 .3 .7 .06 .14
Mean (SE) 1.4 (.2) 1.4 (.1) 1.7 (.4) 9.0 (6.3) �1.4 (1.1) .02 (.02) .31 (.02) .69 (.06)
�MSE .6 .4 .9 13.4 3.6 2.0 .09 .14

Scenario E:
True value 1.00 1.00 2.00 4.50 1.50 2.00 .23 .78
Mean (SE) 1.1 (.2) 1.5 (.3) 2.2 (.4) .32 (.06) .76 (.04)
�MSE .4 .7 .8 .15 .07
Mean (SE) 1.2 (.2) 1.1 (.2) 1.9 (.4) 6.1 (.9) .4 (.9) 3.3 (3.3) .24 (.05) .75 (.04)
�MSE .4 .5 .9 2.5 2.1 6.7 .10 .08

Scenario F:
True value 1.00 1.00 2.00 4.50 1.50 2.00 .22 .80
Mean (SE) 1.3 (.3) 1.9 (.2) 1.8 (.3) .40 (.03) .73 (.05)
�MSE .6 .9 .7 .19 .12
Mean (SE) 1.3 (.2) 1.3 (.3) 1.6 (.4) 14.1 (5.4) �1.4 (1.2) 1e-4 (2e-5) .28 (.05) .73 (.04)
�MSE .5 .6 .8 14.5 3.8 2.0 .12 .11

Scenario G:
True value 1.00 1.00 2.00 4.50 1.50 2.00 .22 .80
Mean (SE) 1.3 (.2) 2.0 (.1) 1.9 (.4) .41 (.03) .75 (.05)
�MSE .6 1.0 .8 .20 .12
Mean (SE) 1.4 (.2) 1.4 (.1) 1.6 (.4) 10.2 (4.2) �1.3 (1.1) 3.4 (3.4) .29 (.02) .73 (.05)
�MSE .6 .4cx .8 10.2 3.6 6.9 .08 .13

a The number of replicates for scenarios A and C–G is 5; that for scenario B is 10.
bMSE = average squared error of the estimate.
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genealogy. We focus on a subset of these individuals,
consisting of everyone of age 15 years (736 individuals)
in nine colonies drawn from three of the four lineages
of the S-leut, with an additional 70 S-leut individuals
from other colonies. For these 806 individuals, we have
a 13-generation pedigree consisting of 1,623 individuals
from which we calculate all nine identity coefficients for
every pair of individuals among the 806. Extensive in-
formation has been collected on a number of traits in
these colonies. We focus here on HDL level, which is
available for 521 of the individuals.

Results

Identity Coefficients and Pairwise Relationships in the
Hutterites

For the 806 Hutterite individuals in our study, we
calculated all nine identity coefficients for every pair of
individuals, as well as the two possible identity coeffi-
cients for each individual with him/herself. The com-
putational difficulty of this operation should not be un-
derestimated, since (a) very few pairs share the same
relationship (see Appendix A) and (b) there are a large
number of pairs that need to be considered (325,221
total pairs among the 806 individuals, when individuals
are included with themselves). Furthermore, the recur-
sive algorithms of Karigl (1981) require that one eval-
uate kinship coefficients of not only pairs but also of
trios and quartets of individuals (see Appendix B)—and
not only among the 806 study individuals themselves
but also among their ancestors in the 13-generation
1,623-member pedigree. This results in many billions of
combinations. Initial estimates indicated that calculating
all the identity coefficients could take years with a simple
execution of the algorithms, but, with some computa-
tional speed-ups (see Appendix B), we were able to do
the entire calculation in !1 wk of computer time. Note
that these calculations are based only on the pedigree,
not on the phenotype. Thus, these identity coefficients
need only be calculated once for a given set of individ-
uals, with the same results used for variance-components
analyses of any phenotype, for any study, including map-
ping and heritability studies, based on any subset of
those individuals.

Calculation of the identity coefficients for all pairs of
individuals among 806 S-leut Hutterites provides a rare
opportunity to consider in detail the structure of rela-
tionships among individuals in an isolated population.
In figure 2, we plot (i.e., the probability that a pairD8

of individuals shares two alleles IBD and that neither
individual’s own alleles are IBD) against (i.e., the�D7

square root of the probability that a pair of individuals
shares exactly one allele IBD and that neither individ-

ual’s own alleles are IBD) for the 324,415 pairs that
consist of two distinct individuals from the 806 Hut-
terites in the sample. The square-root transformation for

is used simply to reduce the amount of empty spaceD7

in the plot and to make the distinct features more visible.
Various point clouds are labeled, representing certain
close relationship types. These points have been classified
into groups based on their approximation by various
outbred relationships. Table 1 lists the relationships cor-
responding to the different labels, giving also the number
of pairs having that approximate relationship, and the
location of the single point on the plot where the rela-
tionship would lie if it occurred for an outbred pair. To
aid in comparison of the point clouds with these refer-
ence points, horizontal lines corresponding to D = .258

and are added to the plot.D = .58

In most cases, a point on the plot represents a pair of
sibships. The reason is that, if A and B are sibs and if
neither is an ancestor to C, then the relationship between
A and C is the same as that between B and C. Similarly,
if there are two sibships of size m and n, then all m #

pairs, in which one individual is taken from each sib-n
ship, have the same relationship (see Appendix A). Thus,
the points representing these relationships are coinci-
dent. For the sib pairs in the “s” cloud, each sibship is
represented by a single point. Points for different sibships
in the “s” cloud may occasionally coincide—for ex-
ample, in the case of two sibships that are double first
cousins to one another. The points along the left side of
figure 2, with , are due to three individuals—a�D = 07

sib pair whose mother is not known to have any an-
cestors in the pedigree and another individual whose
father is not known to us. For the remaining 803 in-
dividuals, identity coefficients , , , , and areD D D D D1 3 5 7 8

non-0 for every pair of individuals. Below, when we
consider the logarithms of these five identity coefficients,
we first eliminate these three individuals. Note that

, , , and will be 0 for every parent-offspringD D D D2 4 6 9

pair.
All the half-sib pairs occurring in the sample are of a

special type, given by the relationship between individ-
uals 1 and 2 in figure 3A, which we call “half-sib plus
first cousin”; that is, the two individuals share a father
and their mothers are sisters. (It is not uncommon in the
Hutterites for a widower to marry his deceased spouse’s
sister.) There are 68 such half-sib–plus–first-cousin pairs
in the sample, but they are represented in figure 2 by
only two points, labeled “h�c”, because they all arise
from two occurrences of a widower marrying his de-
ceased wife’s sister. In one case, a man had 6 children
with one woman and 10 with her sister; in another case,
a man had 8 children with one woman and 1 with her
sister. Other interesting relationships arise from such
families. These relationships are complex, so, in describ-
ing them, we use parentheses to convey the order in
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which relationship modifiers such as “once removed”
are to be applied. The relationships arising in figure 3A
include what we call “(half-sib plus first cousin) once
removed”—that is, the relationship between individuals
1 and 4 and that between individuals 2 and 3, in figure
3A—and “cousin plus second (half-sib plus first
cousin)”—that is, the relationship between individuals
3 and 4 in figure 3A. Both of these relationships occur
in the sample, and the resulting sets of points are labeled
“v” and “w,” respectively, in figure 2. The cloud of
points x in figure 2 represents relationships of the type
between individuals 1 and 2 in figure 3B, which we call
“cousin plus (cousin once removed),” because the two
individuals are first cousins through their fathers and are
first cousins once removed through their mothers.

In figure 2, the large cloud of points y represents the
relationships first cousin, great-grandparent/grandchild,
grand-avuncular, half-avuncular, and (double cousin)
once removed. Note that (double cousin) once removed
is distinct from the relationship double (cousin once re-
moved), which is represented by point cloud z. The first
of these two occurs, for instance, when individual A is
a double first cousin to a parent of individual B. The
second of the two occurs, for instance, when individual
A is a first cousin to both the mother and father of
individual B, but through separate lines of descent, so
that the mother and father of individual B need not be
related. Alternatively, individual A could be a first cousin
to one parent of B, and individual B could be a first
cousin to one parent of A, through separate lines of
descent. All of these situations appear in the Hutterite
sample.

Panels A and B of figure 4 show the histograms of
and , respectively, for the 806 individuals inlog (F) f10

the sample. Their mean kinship coefficient is .042 with
SD .031, although, on the basis of the rough symmetry
on the log scale in figure 4A, it is perhaps more natural
to take the geometric mean, which is .036. These values,
.042 and .036 are between first cousins (.0625) and first
cousins once removed (.03125). The mean inbreeding
coefficient in the sample is .034, which is slightly more
than that for the offspring of first cousins once removed.
In figure 5 we plot the inbreeding coefficient as a func-
tion of year of birth for the 806 individuals in our sam-
ple. It is evident that, over time, there has been an in-
crease in the level of inbreeding of the Hutterites, as
would be expected, given their reproductive isolation,
and as has been noted previously by Ober et al. (1999).
We note that this effect is not explained by any decreased
longevity of individuals with higher inbreeding. The phe-
nomenon persists when deceased individuals are in-
cluded (not shown). Histograms of the identity coeffi-
cients, some of them on the log scale, are given in
figure 6, where and are combined and andD D D3 5 4

are combined. Note that the combined distributionD6

of and is almost exactly log normal and thatD D D3 5 1

is also close to log normal. Means and SDs are given in
table 2.

Variance-Components Analysis of HDL in the
Hutterites

Using the methods described above, we estimated the
inbreeding depression and components of variance of
HDL in the Hutterites. Because of skewness in the HDL
distribution, we normalized by taking the square root
of the phenotype and applied ML to the transformed
data. Fixed effects of age and sex and a constant term
were included in all models. We fit several models, setting
some of the parameters to 0; the results are shown in
table 3. In addition, we fit models including Cov (a,d)h

and . However, estimation of Cov andSS (a,d) SSm h mh h

made very little change in the log likelihood, and the
estimates are consistently close to 0. Models including
these parameters are not included in table 3. When all
models were refit with REML instead of ML, the results
were virtually identical.

Note that the constraints of our model dictate that,
if , then , and that, if , then all otherSS = 0 m = 0 V = 0m h dh

inbreeding dominance components and the inbreeding
depression are 0. However, this constraint has little prac-
tical impact if we allow the number of loci to be arbi-
trary. In that case, if the value of is infinitesimal butVd

still positive, then the other dominance components are
unconstrained. Thus, we argue that in any real data set,
a model with, say , , and estimated with set toV V V Ve a h d

0 can be interpreted as an approximation to the case in
which is set to some arbitrarily small positive value.Vd

When the log likelihood of model 1 is compared with
that for the other models, it is clear that HDL has a
strong genetic component. Model 2, with both andVe

, was most favored according to BIC, giving herita-Va

bilities of 65%. Model 6, which includes the inbreeding
dominance component , is most favored according toVh

AIC. A likelihood-ratio test comparing model 6 to model
2 is at the borderline of significance, giving a P value of
.052. In all cases, the inbreeding depression was notmh

significant. Furthermore, the estimate of was largelyVa

unaffected by which other variance components were
included in the analysis. This is also evident in the fact
that the narrow-sense heritability, , is little changed2h
from model to model. The broad-sense heritability, ,2H
has a slightly different estimate, depending on whether
any dominance components are included, but the mag-
nitude of these variations is close to the level of the
sampling variability.

A lack of detectable inbreeding depression and only
suggestive evidence of any non-0 inbreeding dominance
components in the data may be influenced by a number
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of factors, particularly the genetic model for the trait,
the level of inbreeding, and the sample size. Through
numerical examples and simulations, we examined the
roles of these factors.

Comparison of Models With and Without Additional
Inbreeding Dominance Components and Inbreeding
Depression

For a given pedigree and genetic model, we compared
the results that would be obtained asymptotically—that
is, without sampling variability—under the models with
and without the additional inbreeding dominance com-
ponents and inbreeding depression. We did this by pro-
jecting the full model onto the subspace with the in-
breeding dominance components and inbreeding
depression set to 0, where the projection is obtained by
minimizing the Kullback-Leibler divergence as described
in the Methods section. The first genetic model that we
considered is a biallelic fully dominant model with all
loci having frequency for the dominant allele. Thisq = .8
frequency of .8 was chosen to be in a range in which
the ratios of the inbreeding dominance components to
the additive variance are relatively high. We set the rel-
ative magnitudes of the genetic effect and environmental
variance to give narrow- and broad-sense heritabilities
in the ranges of .22–.23 and .77–.80, respectively, for
the populations that we considered. We also considered
a biallelic three-quarters-dominant model with all loci
having frequency for the dominant allele. We setq = .8
the magnitudes of the genetic effect and environmental
variance to give the same values of dominance-variance
components and as are in the fully dominant modelVe

that we chose. We examined the models, conditional on
each of three different populations: (i) the 806-member
Hutterite sample, (ii) the Hutterite sample with an ad-
ditional 800 independent offspring of first-cousin mar-
riages added to the sample, and (iii) the Hutterite sample
with an additional 500 independent offspring of avun-
cular marriages added to the sample, where (ii) and (iii)
are used to increase the level of inbreeding. The cases
in which projections are examined are scenarios A, B,
and D–F in table 4; results are given in table 5. The
estimate of the total genetic component of variance was
essentially unaffected by use of the wrong model, al-
though the additive variance could be considerably in-
flated when the level of inbreeding was .048 or .069.

Simulation Studies

We performed small-scale simulation studies to see in
which situations we could detect that the extra domi-
nance components and inbreeding depression are non-
0—and whether they could be estimated with reasonable

accuracy. The time-consuming nature of the computa-
tions led us to consider only a few realizations, so these
should be considered simulated examples, rather than a
full-scale simulation study of the sampling distribution
of the estimates. Section A of table 6 gives the ranges
of P values for the likelihood-ratio test of the full model
versus the model with all inbreeding dominance com-
ponents set to 0. For the fully dominant models with
average level of inbreeding .069, there appears to be
reasonable power to detect the inbreeding dominance
components, (four of five cases and five of five cases,
respectively, for scenarios F and G). When the Hutterite
sample is doubled and the model is fully dominant (sce-
nario C), in two of five cases the inbreeding dominance
components were significant. Section B of table 6 gives
the averages of the estimates when the full and restricted
models are used under the different simulated scenarios,
with square roots of their average squared errors. From
these results, it appears that the sample sizes considered
here are not adequate to obtain accurate estimates of
the inbreeding dominance components, even though
there may be some power to detect that they are different
from 0.

Discussion

Both calculation of the nine condensed coefficients of
identity and estimation of dominance-variance compo-
nents in the Hutterite sample are computationally chal-
lenging because of the size and complexity of the sam-
ple’s genealogy (13 generations, 1,623 individuals). We
succeeded in calculating the identity coefficients, and we
used these to examine pairwise relationships in the Hut-
terite population. We fitted variance-component models
including the extra inbreeding dominance components
to HDL in the Hutterite population, apparently the first
time that such components have been estimated in a
human population. In previous studies of inbreeding de-
pression in humans, socioeconomic factors may have
been confounded with consanguinity of parents (Barrai
et al. 1964; Bittles and Neel 1994). In the Hutterite
population that we studied, however, the belief system
and the custom of communal living create a very ho-
mogeneous environment and social structure, and no
such association is expected. We note that there is struc-
ture in mate selection with respect to Hutterite-colony
lineages, with preferences for marriages involving two
individuals from the same lineage (Bleibtreu 1964;
O’Brien 1987; Ober et al. 1997). One might expect that
inbreeding may be associated with the type of marriage
(i.e., whether the individuals are from different lineages
or, if not, which lineage they are from). There is, how-
ever, no evidence for any association of this type (au-
thors’ unpublished data).
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Variance-components analysis of HDL in the Hutter-
ites does not indicate significance of any of the inbreed-
ing dominance components or inbreeding depression.
Both ML and REML are used to estimate the variance
components, with little difference between the results. A
similar study of the annual plant Nemophila menziesii
(Shaw et al. 1998) found significance of inbreeding dom-
inance components and inbreeding depression in several
traits, whereas a study of sheep (Shaw and Woolliams
1999) did not. Both studies had much higher inbreeding
levels than were seen in the Hutterites.

The results of the data analysis, numerical examples,
and simulations suggest that, even with levels of in-
breeding that are high for human populations, and even
with a model having large inbreeding dominance-vari-
ance components and inbreeding depression, a quite sub-
stantial sample size would be necessary in order to ob-
tain reasonable estimates of the components. In our
simulated samples of 1,306 individuals with average in-
breeding .069 in a fully dominant model, there is ap-
parently some power to detect non-0 inbreeding domi-
nance components (detected in four of five cases).
However, even when that sample size is doubled, the
estimates of these components are poor (although, with
only a few simulations, the conclusions that we can draw
about the sampling distributions of these estimators are
necessarily limited). It is worth noting that the models
that we simulated have biallelic loci. Models with mul-
tiallelic loci differ in some respects and potentially may
produce dominance effects that are more pronounced
than those which can be achieved with biallelic loci.
Estimates of heritability did not seem to be very sensitive
to estimation of the additional dominance components.
The sample size would probably need to be much larger
in order for the impact of the inbreeding dominance
components on heritability to be above the level of the
sampling variability. For mapping, this suggests that, at
least for modeling of background polygenic effects, con-
sideration of inbreeding dominance components will not
have a great effect in studies of humans.

In estimating variance components, we have assumed
a multivariate normal model for the genetic effects.
Lange (1978) has given sufficient conditions for a cen-
tral-limit theorem on pedigrees but explicitly excludes
the case with both inbreeding and non-0 dominance var-
iance. We have extended the work of Lange (1978) to
a central-limit theorem on pedigrees that have both in-
breeding and non-0 dominance variance, provided that
no more than one locus per chromosome has non-0 in-
breeding depression, which is the situation that we have
assumed in our models. For mapping, the basis of the
assumption of multivariate normality is questionable.
Assuming a major-gene model, one might expect the
distribution of the genetic effects to be a mixture of
normal distributions or of some other distribution, but

fitting such a model to the Hutterite population is com-
putationally impractical, especially if it must be done
repeatedly in a search for genes. Amos et al. (1996)
considered the robustness of maximum-likelihood esti-
mators of genetic parameters obtained under an as-
sumption of normality. In simulations of a major-gene
effect modeled by a mixture of normal distributions and
having no dominance variance, Amos et al. (1996) found
that estimators obtained under the assumption of nor-
mality performed well. For nonnormal distributions,
Beaty et al. (1985), Amos (1994), and Amos et al. (1996)
have considered quasi-likelihood estimation.

We have neglected epistasis and assortative mating in
our models. If present, assortative mating would have
the effect of inflating the additive variance (Crow and
Kimura 1970). Although it is not possible, on the basis
of phenotype data alone, to estimate epistatic variance
components in natural populations, epistasis can greatly
inflate the additive and/or dominance components, and
it may prove to have great practical importance for
mapping.
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Appendix A

Notes on Relationships

First, we define pairwise relationships and a partial
ordering on the set of pairwise relationships. Next, we
define the n-generation pedigree for two individuals.
With these definitions, it is clear that the n-generation
pedigree for two individuals gives a lower bound on the
true relationship for the pair, with the accuracy of the
approximation increasing with n. Finally, we describe
some conditions that are sufficient for two different rel-
ative pairs to have the same relationship. These sufficient
conditions are particularly relevant in an inbred isolate
such as the Hutterites, where most instances in which
two pairs have the same relationship, on the basis of the
observed 13-generation pedigree, can be attributed to
one of these conditions.

Relationships can be thought of as equivalence classes
on pedigrees. Here we restrict attention to pairwise re-
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lationships. The pedigrees that we consider include
nodes only for the two individuals, call them “a” and
“b,” and for some finite nontrivial subset of ancestors
of a and/or b (with no more than one node for each
individual), with directed edges from parents to off-
spring and with every node connected by a path to either
a or b. Furthermore, we restrict attention to pedigrees
in which every node c in the pedigree is connected to a
or b in such a way that a directed path can be taken
from c to either a or b (i.e., each step is from a parent
to an offspring). (An example of a pedigree ruled out
by the last condition would be that resulting from the
family depicted in fig. 3B, if individual 2’s maternal
grandmother had a node in the pedigree but individual
2’s mother did not.) Let this set of pedigrees be denoted
by . We define and in to be equivalent if thereP P P P1 2

exists such that there are injective maps andP � P f3 1

mapping the nodes of and , respectively, into thef P P2 1 2

nodes of , where the maps preserve a and b (which weP3

take to be uniquely defined in each element of ) andP
where, for each directed edge in , say from c to d, atP3

least one of the following two conditions must hold: (i)
there is no other directed edge starting from c, or (ii)
there exist nodes and in and and in such′ ′ ′′ ′′c d P c d P1 2

that , , there is a di-′ ′′ ′ ′′c = f (c ) = f (c ) d = f (d ) = f (d )1 2 1 2

rected edge from to in , and there is a directed′ ′c d P1

edge from to in . It can be shown that this is an′′ ′′c d P2

equivalence relation on . We define the set of pairwiseP
relationships to be the resulting set of equivalence classes

. We now define a partial ordering on this set. ForC
relationships , we define (i.e., rep-C ,C � C C ≺ C C1 2 1 2 2

resents a closer relationship than ), if there are pedi-C1

grees and and a surjection mappingP � C P � C f1 1 2 2 1

the nodes of onto the nodes of such that a and bP P1 2

are preserved and such that, if there is a directed edge
from c to d in , then there is a directed edge fromP1

to in . It can be shown that this satisfies thef (c) f (d) P1 1 2

conditions of a partial ordering.
Note that members of a pedigree cannot necessarily

be divided into discrete generations (e.g., see fig. 3B).
However, we can, somewhat arbitrarily, define the n-
generation pedigree for individuals a and b to be the
element having the largest number of nodesP � P
among those P satisfying the following conditions: there
is an injective map f from the nodes of P to the set of
individuals ancestral to a and/or b, such that there is a
directed edge from c to d in P if and only if is af(c)
parent of and such that there is at least one directedf(d)
path of length �n from any element to either a or b.
When is taken to be the nth-generation pedigree of aPn

and b and is taken to be the equivalence class withCn

as a member for , it can be shown thatP n � 1 C ≺n n

for all n. From this we conclude that the nth-gen-Cn�1

eration pedigree for two individuals gives a lower bound

on the true relationship for the pair, with the accuracy
of the approximation increasing with n.

Finally, we describe conditions sufficient for two rel-
ative pairs to have the same relationship when all four
individuals are embedded in a large pedigree. Define two
individuals to be sibs if and only if they have the same
parents. Note that different sib pairs need not have the
same relationship. Define two individuals a and b to be
double first cousins if and only if (i) parent 1 of a is a
sib to parent 1 of b and parent 2 of a is a sib to parent
2 of b, for some choice of labeling of a’s and of b’s
parents, and (ii) a’s parents are not sibs. Again, two
different double–first-cousin pairs need not have the
same relationship. Then conditions sufficient for two
relative pairs to have the same relationship include the
following: (i) if individuals A and B are sibs and neither
is an ancestor to C, then the relationship between A and
C is the same as that between B and C; (ii) as a con-
sequence of (i), we conclude that, if A and B are sibs
and C and D are sibs and if none is ancestral to another,
then A and C have the same relationship as B and C, A
and D, and B and D; (iii) if individuals A and B are
double first cousins and if they are neither ancestors nor
offspring of C and if C is not a descendant of a parent
of A or B, then the relationship between A and C is the
same as that between B and C. In the Hutterites, these
conditions account for the vast majority cases in which
two pairs of individuals are found to have the same
relationship based on the observed 13-generation pedi-
gree.

Appendix B

Computational Speed-Ups in the Calculation of Identity
Coefficients

To calculate the identity coefficients, we follow the
method of Karigl (1981). This method requires that one
calculate a set of generalized kinship coefficients, from
which one can obtain the identity coefficients via a linear
transformation. The generalized kinship coefficients are

, the standard kinship coefficient for two individuals,Fab

together with kinship coefficients for three individuals,
four individuals, and two pairs of individuals: ,Fabc

and , respectively. The definition of is theF F Fabcd ab,cd ab

probability that a randomly chosen allele from a is IBD
with a randomly chosen allele from b. Similarly, (orFabc

) is the probability that three (or four) randomlyFabcd

chosen alleles, one from each individual, are IBD.
is the probability that a random allele from a isFab,cd

IBD with a random allele from b and that a random
allele from c is IBD with a random allele from d. Using
the notation to mean that a is not an ancestor ofa xZ b
b and using “f” and “m” to denote, respectively, the
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father and mother of individual a, we can write recursion
formulas for the generalized kinship coefficients:

1
( )F = F � F for a xZ bab fb mb2

1
( )F = 1 � Faa fm2

1
( )F = F � F for a xZ b,cabc fbc mbc2

1
( )F = F � F for a xZ baab ab fmb2

1
( )F = 1 � 3Faaa fm4

1
( )F = F � F for a xZ b,c,dabcd fbcd mbcd2

1
( )F = F � F for a xZ b,caabc abc fmbc2

1
( )F = F � 3F for a xZ baaab ab fmb4

1
F = (1 � 7F )aaaa fm8

1
F = (F � F ) for a xZ b,c,dab,cd fb,cd mb,cd2

1
F = (F � F ) for a xZ b,caa,bc bc fm,bc2

1
F = (2F � F � F ) for a xZ b,cab,ac abc fb,mc mb,fc4

1
F = (F � F ) for a xZ baa,ab ab fmb2

1
F = (1 � 3F ).aa,aa fm4

Furthermore, when there is no com-F = F = F = 0ab abc abcd

mon ancestor to the four individuals a–d and F = 0ab,cd

unless there are two common ancestors, one for a and
b and one for c and d. From these rules, all of the gen-
eralized kinship coefficients may be calculated for a given
pedigree.

The identity coefficients may be found from the kin-
ship coefficients, on the basis of the following linear
transformation:

1 1 1 1 1 1 1 1 1 D 11     
2 2 2 2 1 1 1 1 1 D 2F2 aa

2 2 1 1 2 2 1 1 1 D 2F3 bb

4 0 2 0 2 0 2 1 0 D 4F4 ab

8 0 4 0 2 0 2 1 0 D = 8F .5 aab

8 0 2 0 4 0 2 1 0 D 8F6 abb

16 0 4 0 4 0 2 1 0 D 16F7 aabb     4 4 2 2 2 2 1 1 1 D 4F8 aa,bb

16 0 4 0 4 0 4 1 0 D 16F     9 ab,ab

The recursive nature of the kinship-coefficient equa-
tions suggests two basic alternative strategies for their

calculation. The first method is to start with the founders
of the pedigree and descend through the pedigree one
generation at a time, calculating the kinship coefficients
for all pairs within a generation. This method proves
efficient in that coefficients for particular combinations
of individuals are calculated only once. Also, in the case
in which there are many generations, the information
necessary in order to calculate the kinship coefficients
for the next generation is encompassed entirely within
the current generation and only those members of pre-
vious generations who have mated with members in the
current generation. If there are no cross-generational
matings, only the coefficients for the current generation
need to be retained. Although this method is a standard
way to calculate the two-person kinship coefficient, it
proves problematic when one is working with a large,
complex pedigree such as the Hutterites. The difficulty
is a consequence of the very large number of three-in-
dividual, four-individual, and two-pair kinship coeffi-
cients. As a result, the memory demands required in
order to consider any generation in the Hutterites, aside
from the first few, quickly exceed the capacity of avail-
able computers. It is conceivable that the memory de-
mands could be reduced by a consideration of only those
groupings of individuals that are needed to calculate the
identity coefficients for the study sample, rather than all
possible groupings within a generation; however, there
is no a priori method to identify these combinations. For
these reasons, this approach is impractical, given the size
and complexity of the Hutterite pedigree.

Another strategy may be characterized as a bottom-
up approach. Here, one starts with a particular pair for
which the identity coefficients are desired and recursively
applies the equations discussed above, calculating only
those kinship coefficients that are needed for that par-
ticular pair. The disadvantage here is that, even though
we calculate only those kinship coefficients that are nec-
essary for the pair, when we select the next pair from
our study sample we may end up recalculating many of
the same values, wasting large amounts of time. If, in-
stead, we are able to store these values and recall them
as needed, there is potential for greatly speeding up the
process. The problem then becomes one of efficiently
storing and recalling the various kinship coefficients that
have been calculated, given the large number of com-
binations and the need to minimize memory search time.
Also, because it is unclear how many of each type of
kinship coefficient will be calculated, the memory
scheme must be flexible.

To satisfy these requirements, we have implemented
a hash table. This allows us to set aside a large amount
of memory that could be used to store any of the co-
efficients, as necessary, but provides a fairly fast method
for recall of previously calculated values. Efficiency is
improved by ordering the pairs such that one may take
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advantage of relationship equivalency classes. For in-
stance, once person A’s coefficients of identity with a set
of people have been calculated, the coefficients ofBi

identity of that set of people with A’s siblings are im-
mediately known, as long as none of the are descen-Bi

dants of either A or a sibling of A.
Another problem arises because, even though we are

now restricting the calculations to only those kinship
coefficients that are necessary for the pairs in question,
the available memory can become quickly exhausted (we
used an R10000 CPU on an SGI Power Challenge XL
with 1 GB of RAM dedicated to the computation). In
such a circumstance, we decided to erase the existing
calculations and to refill the memory as needed. Al-
though this procedure entails recomputation of many
kinship coefficients, it proves to be quicker than it would
be to replace existing calculations one at a time, since
this latter procedure requires the overhead of searching
through the entire memory space before the replacement.
Implementation of the strategy outlined above allowed
us to calculate the nine identity coefficients for all
325,221 pairs in our study sample, in ∼5 d of computer
time.

Appendix C

Sufficient Conditions for a Central-Limit Theorem with
Both Inbreeding and Non-0 Dominance Variance

Lange’s (1978) conditions for a central-limit theorem
for polygenic-trait values in a pedigree or collection of
pedigrees require either no inbreeding or no dominance
variance. In the present report, we consider models in
which both inbreeding and dominance variance are al-
lowed, with the restriction that no more than one locus
per chromosome has non-0 inbreeding depression. We
extend Lange’s (1978) second central-limit theorem to
this case. Following Lange (1978), we assume Hardy-
Weinberg equilibrium and that all loci are in linkage
equilibrium, that there is no assortative mating or epis-
tasis, that the number of chromosomes goes to infinity,
that there are a fixed number of individuals m, and that
there is an upper bound q on the number of loci per
chromosome.

Let be the random contribution of locus k toiXk

the trait value of individual i. Let denote the eventiHk

that individual i’s two alleles at locus k are IBD. Let
be the inbreeding depression at locus k. Followingmhk

Lange (1978), we have Cov( i j i jX ,X ) = [Pr(H ∩ H ) �k l k l

. If loci ki j i jPr(H )Pr(H )]m m = [Pr(H ∩ H ) � f f ]m mk l hk hl k l i j hk hl

and l are linked, the relationship between individuals i
and j can be chosen so that the first factor is either
positive or negative. Thus, we have the following result.

LEMMA: Assume that . Then Cov( fori jk ( l X ,X ) = 0k l

all possible relationships between individuals i and j if
and only if at least one of the following holds: (i) loci
k and l are unlinked or (ii) either or .m = 0 m = 0hk hl

As noted in the Methods section, if k is a biallelic
locus, implies . However, for a locus withm = 0 V = 0hk dk

more than two alleles, it is possible to have large dom-
inance variance with 0 inbreeding depression. Thus, con-
dition (ii) is weaker than Lange’s (1978) condition (c)
(absence of dominance variance).

Let be the random column vector with ith entryXk

. Let . Here, L is the number of loci, andi LX S = � Xk L k=1 k

we will let . Let , where f isLL r � m = E(S ) = f� mL L k=1 hk

the vector of inbreeding coefficients. Suppose for the
moment that , calculated by means of equa-Q { Var(S )L L

tions (2) and (3), with set to 0, is positive definite.Ve

For any column vector u with m components, we have
Var[ . LetT T 2 Lu (S � m )] = u Q u a = � (V � V �L L L L k=1 ak dk

, where is the additive variance,2V � Cov(a,d) � m ) Vhk k hk ak

is the dominance variance, is the homozygousV Vdk hk

dominance variance, and is the homozygousCov(a,d)k

additive by dominance covariance due to the kth locus.
Assume that for each k. This implies thatV � V 1 0ak dk

for each L. We give sufficient conditions for2a 1 0L

MVN(0,S). We apply Orey’s (1958) uni-(S � m )/a ⇒L L L

variate central-limit theorem for q-dependent random
variables to the sequence .T Tu (X � fm ),...,u (X � fm )1 h1 L hL

If we assume that we have ordered the loci by chro-
mosome and that there are �q loci per chromosome,
then this sequence is q dependent. Following Lange
(1978), under the conditions of the Lemma, we will have

N(0,1), the standard normal dis-T T�u (S � m )/ u Q u ⇒L L L

tribution, provided that the Lindeberg condition
holds for every , where2 L 21/b � W dP r 0 e 1 0∫ 1L k=1 {FW F eb } kk L

and . The following is anT 2 TW = u (X � f ) b = u Q uk k m L Lhk

extension of Lange’s (1978) second central-limit theo-
rem to the case of non-0 dominance variance with in-
breeding, with no more than one locus per chromosome
having non-0 inbreeding depression:

THEOREM: Suppose that for all k,V � V 1 0ak dk

, ,2 L 2 2 L 2 2(1/a )� V r j ! � (1/a )� V r j ! � (1/a )L k=1 ak a L k=1 dk d L

, and withL 2 2 L� V r j ! � (1/a )� Cov (a,d) r jk=1 hk h L k=1 h k ad

(so 2 L 2 2 2 2Fj F ! � (1/a )� m r s = 1 � j � j � j �ad L k=1 hk a d h

). Also assume that 2�d Lj lim (1/a )� maxad Lr� L k=1 j�{1,...,m}

= 0 for some . Thenj 2�dEFX �f m F d 1 0 (S �k j hk L

MVN(0,Q), where Q is as given in equationsm )/a ⇒L L

(2) and (3), with , replaced by , ,2V = 0 V j i = a,d,he i i

Cov replaced by , and replaced by s.(a,d) j SSh ad mh

The proof closely follows that of Lange (1978). It
suffices to prove that N(0, ) fort Tu (S � m )/a ⇒ u QuL L L

each column vector u. If , then Var(T Tu Qu = 0 u (S �L

, and the result is immediate. Otherwise, form )/a ) ⇒ 0L L

each random variable R, define .2�d 1/(2�d)FFRFF = (EFRF )2�d

Applying Minkowski’s inequality and letting jY =k

, we getjX � f mk j hk
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L LT 2�d T 2�dEFu YF = FFu YFF� �k=1 k k=1 k 2�d

L m j 2�d� ( FFu Y FF )� �k=1 j=1 j k 2�d

L m j 2�d= ( FuF FFY FF )� �k=1 j=1 j k 2�d

m L2�d j 2�d� ( FuF) max EFY F .� �j=1 j k=1 j�{1,...,m} k

(Note that E depends on j only through .) LetjFY F fk j

. Then, for ,2 Tc = u Q u e 1 0L L

L1 T 2Fu YF dP�� k2( )c tk=1 1L {Fu Y F ec }k L

L

d 2�d �1 T 2�d� (e c ) Fu YF dP�L � k
k=1

m L

2�d d 2�d j 2�d� ( FuF) /(e c ) max EFY F� �j L j�{1,...,m} k
j=1 k=1

m

2�d d 2�d �2�d= ( FuF) /[e (c /a ) ]a� j L L L
j=1

L

j 2�d# max EFY F r 0 ,� j�{1,...,m} k
k=1

since Tc /a r u Qu 1 0.�L L
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